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H+-transporting ATP synthase (H+-ATPase) is a multi-subunit

complex which acts to produce ATP molecules. The catalytic subunit

A of the archaeal-type H+-ATPase from Pyrococcus horikoshii OT3

was cloned, expressed in Escherichia coli, puri®ed and crystallized by

the hanging-drop vapour-diffusion method with MPD as a precipi-

tant. X-ray intensity data were collected to 2.55 AÊ resolution at

beamline BL41XU of SPring-8. The crystals belong to the tetragonal

space group P41212 or P43212, with unit-cell parameters a = b = 128.0,

c = 104.7 AÊ , and contain one molecule per asymmetric unit.
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1. Introduction

H+-transporting ATP synthase/hydrolase

(H+-ATPase; EC 3.6.3.14) is a multi-subunit

enzyme that exists in every organism and acts

to produce ATP molecules. F-type ATPase

(also called F-ATPase or F0F1-ATP synthase)

acts as a functional ATP synthase in a rota-

tional mode by the electrochemical potential

gradient of H+ (Yasuda et al., 2001). The

V-type enzyme in vacuoles and clathrin-coated

vesicles (V-ATPase) pumps H+ rather than

synthesizing ATP under physiological condi-

tions, although it has a similar structure to the

F-type enzyme (Futai et al., 1998; Forgac,

1999). Archaeal A-type ATPase, also called

A-ATPase or A0A1-ATP synthase, is the third

class of the H+-translocating ATPase super-

family (Schafer & Meyering-Vos, 1992).

A-ATPase operons and genes encoding struc-

tural proteins are highly conserved in archaeal

species. Each enzyme of the three classes

mentioned above consists of two sectors: a

hydrophilic catalytic headpiece sector (F1/V1/

A1) and a membrane sector (FO/VO/AO). The

extramembrane F1/V1/A1 sectors (containing a

�3�3 subcomplex in F1; A3B3 in V1/A1) are

connected via the F1  subunit or the V1/A1 D

subunit to the FO/VO/AO sectors. The major

nucleotide-binding subunits are � and � in

F1-ATPase and A and B in V1/A1-ATPase. The

subunits � and A are catalytic in each ATPase.

A-type enzymes function as ATP synthases, as

reported in Methanosarcina mazei Go1

(Becher & Muller, 1994), Halobacterium sali-

narium (halobium) (Mukohata et al., 1987;

Ihara & Mukohata, 1991), H. saccharovorum

(Hochstein, 1992) and Pyrodictium abyssi

(Dirmeier et al., 2000). On the basis of its

subunit composition and the primary

sequences of its subunits, however, the A-type

enzyme is more closely related to the V-type

than to the F-type (Muller et al., 1999).

Therefore, A-ATPase is thought to have

chimeric properties of F-ATPase and V-

ATPase with regard to structure and function.

The three-dimensional structures of the

A-ATPase complex or any component of

A-ATPase are still unknown. Structural studies

of A-ATPase will provide important informa-

tion on the evolutionary relationship between

F-, V-, and A-ATPases. As part of our interest

in the structural biology of H+-ATPase, espe-

cially A-ATPase, we crystallized the catalytic

subunit of A-ATPase. The gene (ph1975)

encoding ATPase subunit A in the hyperther-

mophilic archaeon Pyrococcus horikoshii OT3

(Kawarabayasi et al., 1998) is predicted to

contain a self-splicing protein element called

intein coded by 1128 nucleotides (42 kDa)

from its nucleotide sequence (Perler, 2002).

The intein-removed mature subunit A consists

of 588 amino-acid residues with a molecular

weight of 66 kDa.

Here, we report the crystallization condi-

tions and preliminary analysis of the

crystallographic data from the catalytic subunit

A of A-ATPase from P. horikoshii.

2. Materials and methods

2.1. Construction of expression vector

The gene encoding P. horikoshii A-type

ATPase catalytic subunit A was ampli®ed by

PCR according to the method of Cann et al.

(2001) with four primers: F1 with an NdeI

restriction site (50-GAGGTGAGTACATATG-

GTGGCGAAGGGGAG), R1 with a SalI

restriction site (50-CTTGCTCAGTCGACT-

CACGCCCCATACTTC), F2 (50-GGCCTTT-

CGGCAGCGGTAAGACGGTGACTCAGC-

ATCAGC) and R2 (50-GCTGATGCTGAG-

TCACCGTCTTACCGCTGCCGAAAGGCC).

The DNA fragments encoding the N-terminal

extein (723 nucleotides) and C-terminal extein

(1044 nucleotides) were ampli®ed by PCR

from the genomic DNA of P. horikoshii with
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the primers F1-R2 and F2-R1, respectively.

The ampli®ed fragments coding the

N-terminal and C-terminal exteins were

fused together via a second PCR using the

primers F1 and R1. The fused DNA frag-

ment was digested with NdeI and SalI and

ligated into NdeI/SalI-digested pET22b(+)

vector (Novagen).

2.2. Purification

The plasmid was transformed into

Escherichia coli B834 Codon Plus (DE3)-

RIL cells (Stratagene). The cells were grown

at 310 K in 2 l LB medium containing

100 mg mlÿ1 ampicillin and 34 mg mlÿ1

chloramphenicol. At an OD600 of 0.6, the

cells were induced by the addition of 1 mM

IPTG and growth continued at 310 K for 5 h.

The cultured cells were resuspended in Tris±

HCl buffer (50 mM Tris±HCl pH 8.5, 50 mM

NaCl, 1 mM DTT, 1 mM EDTA) and

disrupted using a French pressure cell

(Aminco). The cell lysate was incubated at

343 K for 30 min, kept on ice and then

centrifuged at 40 000g for 30 min. Ammo-

nium sulfate was added to the supernatant to

60% saturation. The solution was centri-

fuged at 20 000g for 20 min. The protein

pellet was resuspended and dialyzed against

buffer A (50 mM Tris±HCl pH 9.0, 1 mM

DTT, 50 mM NaCl). The solution was

applied onto a HiTrap Q-XL column

(Amersham Bioscience) equilibrated with

buffer A. The bound protein was eluted with

a linear NaCl gradient (0.05±1.0 M). The

fractions containing ATPase subunit A were

applied onto a column of HiLoad 26/60

Superdex200pg (Amersham Bioscience)

equilibrated with buffer B (50 mM Tris±HCl

pH 8.0, 1 mM DTT, 200 mM NaCl). The

peak fractions were dialized against buffer A

and loaded onto a Resource Q column

(Amersham Bioscience) equilibrated with

buffer A. The bound protein was eluted

from a linear NaCl gradient (0.05±1.0 M).

ATPase subunit A eluted at a concentration

of 0.3 M NaCl. The peak fractions were

combined and dialyzed against crystal-

lization buffer (50 mM Tris±HCl pH 7.5) and

concentrated to a ®nal concentration of

10 mg mlÿ1.

2.3. Crystallization and data collection

Initial crystallization screening was

performed by the sitting-drop vapour-

diffusion method with Wizard Screens I and

II (Emerald BioStructures) and Crystal

Screens I and II (Hampton Research). Each

drop consisted of 1 ml protein solution and

1 ml reservoir solution and was equilibrated

against 100 ml reservoir solution at 293 K.

Small crystals of P. horikoshii ATPase

subunit A were obtained from a reservoir

solution containing 35%(v/v) MPD and

0.1 M acetate buffer pH 4.5 (Wizard II No.

21) after 1 d. Further optimization of this

condition was performed to improve the size

of the crystals. Larger subunit A crystals

suitable for X-ray diffraction measurement

were obtained by the hanging-drop vapour-

diffusion method at 293 K from a solution

containing 46±50%(v/v) MPD and 0.1 M

acetate pH 4.5±4.7. 2 ml protein solution was

mixed with an equal volume of reservoir

solution and equilibrated against 1.0 ml

reservoir solution. These crystals were ¯ash-

cooled in a stream of nitrogen gas and

diffraction data were collected at 100 K. An

X-ray intensity data set from the native

crystal of subunit A was collected using

synchrotron radiation with a MAR CCD

detector at beamline BL41XU of SPring-8,

Japan. Data processing was performed using

MOSFLM (Leslie, 1993), SCALA and the

CCP4 program suite (Collaborative

Computational Project, Number 4, 1994).

3. Results

The high expression level of subunit A and

the application of heat treatment facilitated

the process of puri®cation with no af®nity

tag, as described above. In a gel-®ltration

experiment, subunit A eluted at a retention

time corresponding to about 66 kDa, which

suggests that subunit A exists as a monomer

in solution. The typical yield of puri®ed

subunit A was 9.5 mg per litre of culture.

The size of the subunit A crystals was

improved by optimizing the crystallization

conditions. By further adjusting the MPD

concentration, larger crystals were obtained

that diffracted well. Interestingly, a high

concentration of precipitant (up to 50%

MPD) seems to be preferable for reducing

the number of crystals in a drop repro-

ducibly; i.e. for the production of high-

quality large crystals of ATPase subunit A.

Within a week, the subunit A crystals had

grown to dimensions of 0.2 � 0.2 � 0.65 mm

(Fig. 1). The native crystals belonged to the

tetragonal space group P41212 or P43212,

with unit-cell parameters a = b = 128.0,

c = 104.7 AÊ . The asymmetric unit contained

one subunit A molecule. The crystal volume

per unit molecular weight, VM, was calcu-

lated to be 3.3 AÊ 3 Daÿ1, which corresponds

to a solvent content of 62.1% (Matthews,

1968). The native data set was collected and

processed to 2.55 AÊ . The crystallographic

parameters and data statistics are given in

Table 1.
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Figure 1
A crystal of subunit A. The dimensions of this crystal
are 0.2 � 0.2 � 0.65 mm.

Table 1
Diffraction data statistics.

Values in parentheses are for the highest resolution shell
(2.64±2.55 AÊ ).

Beamline SPring-8 BL41XU
X-ray wavelength (AÊ ) 0.9000
Space group P41212 or P43212
Unit-cell parameters (AÊ ) a = 128.0, c = 104.7
Resolution limits (AÊ ) 38.6±2.55
Observed re¯ections 311493
Unique re¯ections 28944
Completeness (%) 99.9 (99.9)
Redundancy 10.8 (11.1)
Average I/�(I) 3.9 (2.0)
Rmeas² (%) 11.8 (38.3)

² Rmeas =
P

h�m=�mÿ 1��1=2 P
j jhIih ÿ Ih;jj=

P
h

P
j Ih;j ,

where hIih is the mean intensity of the symmetry-equivalent

re¯ections and m is the redundancy.
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